CH 3: Steady Heat
Conduction



Heat Trnasfer problems can be modelled as an
electric circuit models

The thermal resistance corresponds to
electrical resistance

Temperature difference corresponds to
voltage

The heat transfer rate corresponds to electric
current



Steady Heat Conduction in Plane

Walls
 We intuitively feel that heat transfer through the

wall is in the normal direction to the wall surface,
and no significant heat transfer takes place in the
wall in other directions.

 Recall: heat transfer in a certain direction is driven
by the temperature gradient in that direction.




 The energy balance for the wall can be expressed as:

| Rateof | [ Rateof Rate of change
(heat transfer | — ( heat transfer | = | of the energy
Jinto the wall/  \out of the wall/ | of the wall
or
s A _ dEu'al]
Qin QGU[ - T
But dE,,,, /dt = 0 for steady operation
* Which means in=out and we get
: dT
Qt'nnd.wull = —kA a (W)
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Separating the variables in the above equation and integrating from x = 0,
where T(0) = T\, tox = L, where T(L) = T,, we get
T,

L
j 0 cond, wall dx = — kA dT
x=10 =T,

Performing the integrations and rearranging gives

. T| _ Tg
QL'-;‘.'HI], wall — KA L [W} (3-3)
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The Thermal Resistance Concept

Equation 3-3 for heat conduction through a plane wall can be rearranged as

. T| - Tl .
Ountvat =—p— (W) (3-4)
wall
Q_n_g
where ~ R
_ L B R
Ruat = 15 (°C/W) (3-5)
(a) Heat flow v
1T Y
- . I =7%
is the .fhel?rmaf F.E?SISI{IHE‘E of the wall against heat conduction o1 simply the V. AAAAAA—" .V,
conduction resistance of the wall. Note that the thermal resistance of a R
medium depfznds on the geometry anc} the thermal properties F\f the I'[‘.IE':dII.]I]."l, (b) lectric carreat flow
The equation above for heat flow is analogous to the relation for electric FIGURE 3-3
current flow I, expressed as Analogy between thermal
and electrical resistance concepts.
=Y (3-6)
-~ % !

where R, = L/o, A is the electric resistance and V, — V, is the voltage differ-
ence across the resistance (o, is the electrical conductivity). Thus, the rate of
heat transfer through a layer corresponds to the electric current, the thermal
resistance corresponds to electrical resistance, and the temperature difference
corresponds to voltage difference across the layer (Fig. 3-3).



 For convection heat transfer Newton's law of

cooling can be re-arranged as: N
L
Solid h T-
| Q.
T; - AA f__x_..v.__x_."j__x_." AA - T:-c
. Tr.—T. ) R -1
Q cony = R (W) (3-7) conv "~ hA
COny FIG URE 3_4
where Schematic for convection
resistance at a surface.
] - .
Ru::m — H (Cﬂ’w ) {33}

is the thermal resistance of the surface against heat convection, or simply the
convection resistance of the surface (Fig. 3—4). Note that when the convec-
tion heat transfer coefficient is very large (h — ©¢), the convection resistance
becomes zero and T, = T... That is, the surface offers no resistance to convec-
tion, and thus it does not slow down the heat transfer process. This situation is
approached in practice at surfaces where boiling and condensation occur. Also
note that the surface does not have to be a plane surface. Equation 3-8 for
convection resistance is valid for surfaces of any shape, provided that the as-
sumption of 7 = constant and uniform is reasonable.



* For radiation heat transfer we get

T-.- - Tﬁu T

Qg = 80 AT} = Th) = heyg A (T, — Tyy) = —
Rmd

SUIT rad

(W) (3-9)

where

|

hmr_i - IIrJ"rir_i"fil"_-;

(K/W) (3-10)

is the thermal resistance of a surface against radiation, or the radiation re-
sistance, and

_ Q rad
AE(TS o Tsurr}

By = e0(T2 + T2 )T, + Ty (W/m? - K) (3-11)

is the radiation heat transfer coefficient. Note that both 7, and T, must be
in K in the evaluation of h.4. The definition of the radiation heat transfer co-
efficient enables us to express radiation conveniently in an analogous manner
to convection in terms of a temperature difference. But hi,y depends strongly
on temperature while h,,, usually does not.
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e Combined heat transfer can be re-written as

A surface exposed to the surrounding air involves convection and radiation
simultaneously, and the total heat transfer at the surface is determined by
adding (or subtracting, if in the opposite direction) the radiation and convec-
tion components. The convection and radiation resistances are parallel to each
other, as shown in Fig. 3-5, and may cause some complication in the thermal
resistance network. When T, = T.., the radiation effect can properly be ac-
counted for by replacing & in the convection resistance relation by

hn:umhinn:d = hmmr + hmd (Wl'lrmj ' K] (3-12)

where Reombinea 15 the combined heat transfer coefficient. This way all the
complications associated with radiation are avoided. A, Covar
L Ao T,

0

—_—

Cline

Solid —
_'I\"-,..-".""\.-".‘.'\-".-I‘.'U'..I‘-"-J'.ﬁ".,‘,-' .-'-.__' TS -
R

rad
Q = Qcmw * Qmﬂ
FIGURE 3-5

Prepared by: Dr. Tahir Abdul Hussain Schematic for convection and
radiation resistances at a surface.
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FIGURE 3-6

The thermal resistance network for heat transfer through a plane wall subjected to convection on both sides,
and the electrical analogy.
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Thermal Resistance Network

Under steadv conditions we have

Rate of

heat convection
from the wall

Rate of
heat conduction
through the wall

heat convection

Rate of ) '-
. into the wall

or

. Tl _Tz

Q =hAT.,, —T)=KA I

= hz A{T} - :..:j_} (3-13)

which can be rearranged as

T:.-:] - T| T| - Tz Tz - ij

) = — — FIGURE 3-7
l,n"ﬁl A L fm l‘;h] A A useful mathematical identity.
T_,.:| - Tl Tl - Tz T} - T'._,C: {3 14}
Rmm-_ 1 Rwall Rmm‘. 2 )
Adding the numerators and denominators yields (Fig. 3-7)
P S _
) =—5— (W) (3-15)

R|L'3'.:'.|



FIGURE 3-8

The temperature drop across a layer is
proportional to its thermal resistance.
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* Equation 3-15 can be re-arranged as:

AT = OR (°C) (3-17)

which indicates that the temperature drop across any layer is equal to the rate
of heat transfer times the thermal resistance across that layer (Fig. 3—8). You
may recall that this is also true for voltage drop across an electrical resistance
when the electric current is constant.

E——— O = 10 W

] .
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FIGURE 3-8 2°C/W 15°CIW 3°C/W
The temperature drop across a layer is
proportional to its thermal resistance. AT=QR




It 1s sometimes convenient to express heat transfer through a medium in an
analogous manner to Newton’s law of cooling as

Q0 =UAAT (W) (3-18)

where U is the overall heat transfer coefficient. A comparison of Egs. 3—15
and 3—18 reveals that

1

tetal

UA = (3-19)

R
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Multi Plane Walls

Consider a plane wall that consists of two layers (such as a brick wall with
a layer of insulation). The rate of steady heat transfer through this two-layer
composite wall can be expressed as (Fig. 3-9)

. T:,-| _ ?_.'.r."‘
= — (3-21)
Q Rlntil

where R, is the fotal thermal resistance, expressed as

R:nli’. =R I + R'.Li'_l.l + R'.I-':LII.E + R
1 L, L 1

= — =
h|=ﬂl A|A J"rL:r‘l. .lr?:f"l.

COmY, conv, 2

(3-22)

The subscripts 1 and 2 in the R, relations above indicate the first and the
second layers, respectively. We could also obtain this result by following the
approach used above for the single-layer case by noting that the rate of steady
heat transfer Q through a multilayer medium is constant, and thus it must be
the same through each layer. Note from the thermal resistance network that
the resistances are in series, and thus the fotal thermal resistance is simply the
arithmetic sum of the individual thermal resistances in the path of heat flow.
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FIGURE 3-9

The thermal resistance network for
heat transfer through a two-layer
plane wall subjected to

convection on both sides.
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Once Q is known, an unknown surface temperature 7} at any surface or in-
terface j can be determined from

.=T,'_T}

o (3-23)

JF‘-[.tm,a.l. i—j

where T; is a known temperature at location i and Ry, ;  ; is the total thermal
resistance between locations i and j. For example, when the fluid temperatures
T, and T, for the two-layer case shown in Fig. 3-9 are available and 0 is
calculated from Eq. 3—21, the interface temperature 7, between the two walls
can be determined from (Fig. 3—10)

L W L Wk (3-24)
Bl chm‘.] + Rwa]l.l Bl L + i )
A kA

The temperature drop across a layer is easily determined from Eq. 3-17 by
multiplying Q by the thermal resistance of that layer.
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The evaluation of the surface and
interface temperatures when T, and
T, are given and Q is calculated.



EXAMPLE 3-1 Heat Loss through a Wall

Consider a 3-m-high, 5-m-wide, and 0.3-m-thick wall whose thermal con-
ductivity is k = 0.9 W/m - °C (Fig. 3-11). On a certain day, the temperatures of
the inner and the outer surfaces of the wall are measured to be 16°C and 2°C,
respectively. Determine the rate of heat loss through the wall on that day.

16°C

-

L=03m

FIGURE 3-11
Schematic for Example 3—1.
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SOLUTION The two surfaces of a wall are maintained at specified tempera-
tures. The rate of heat loss through the wall is to be determined.

Assumptions 1 Heat transfer through the wall is steady since the surface
temperatures remain constant at the specified values. 2 Heat transfer is one-
dimensional since any significant temperature gradients will exist in the direc-
tion from the indoors to the outdoors. 3 Thermal conductivity is constant.
Properties The thermal conductivity is given to be Kk = 0.9 W/m - °C.

Analysis Noting that the heat transfer through the wall is by conduction and
the area of thewall is A =3 m X 5m = 15 m?, the steady rate of heat transfer
through the wall can be determined from Eq. 3-3 to be

. T, — T,
0 = kA —F— = (0.9 W/m - °C)(15 m?)

1o = 2% _ 60w

03m
We could also determine the steady rate of heat transfer through the wall by
making use of the thermal resistance concept from

Q _ Ifijr'wl.ra]l
- Rwal]
where
L 0.3m
Roi = — = = 0.02222°C/'W
" kA (0.9 W/m - °C)(15 m?)
Substituting, we get
(16 — 2)°C
= 630 W

T 0.02222°C/ W



EXAMPLE 3-2 Heat Loss through a Single-Pane Window

Consider a 0.8-m-high and 1.5-m-wide glass window with a thickness of 8 mm
and a thermal conductivity of k = 0.78 W/m - °C. Determine the steady rate of
heat transfer through this glass window and the temperature of its inner surface
for a day during which the room is maintained at 20°C while the temperature of
the outdoors iIs —10°C. Take the heat transfer coefficients on the inner and
outer surfaces of the window to be h; = 10 W/m? - °C and h, = 40 W/m? - °C,
which includes the effects of radiation.

«1— (Glass

20°C ——,

Tl
H\\Nﬂ
¥ -10°C

h, = 10 W/m2.°C h, =40 W/m2.°C

L =8 mm

i 5 o
Txl L EURERES T""]

FIGURE 3-12
Schematic for Example 3-2.
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Assumptions 1 Heat transfer through the window is steady since the surface
temperatures remain constant at the specified values. 2 Heat transfer through
the wall is one-dimensional since any significant temperature gradients will ex-
ist in the direction from the indoors to the outdoors. 3 Thermal conductivity is
constant.

Properties The thermal conductivity is given to be k = 0.78 W/m - °C.
Analysis This problem involves conduction through the glass window and con-
vection at its surfaces, and can best be handled by making use of the thermal
resistance concept and drawing the thermal resistance network, as shown in
Fig. 3-12. Noting that the area of the windowis A=0.8m x 1.5m = 1.2 m?,
the individual resistances are evaluated from their definitions to be

1 1
Ri=Rypn 1= = — = 0.08333°C/W
AT (10 Wim? - °C)(1.2 md)
L 0.008 m
Ry =-—= = 0.00855°C/ W
glass T kA T (0.78 W/m - °C)(1.2 m2)
R, = Regpy 2 = 1 I = 0.02083°C/ W

hyA ~ (40 W/m? - °C)(1.2 m?)

Noting that all three resistances are in series, the total resistance is
Rigut = Reony, 1 T Rytass T Reony,2 = 0.08333 + 0.00855 + 0.02083
= 0.1127°C/W
Then the steady rate of heat transfer through the window becomes

T, —T. [20—(—10)]°C
C=—"R -~ =~ ol2°C/W

= 2660 W

Knowing the rate of heat transfer, the inner surface temperature of the window
glass can be determined from

2 TII - Tl =
Q=73 "7 —— Ti=Ta~ QR
' = 20°C — (266 W)(0.08333°C/W)
= -2.2°C



Thermal Contact Resistance

* |In the analysis of heat conduction through
multilayer solids, we assumed “perfect contact”
and thus no temperature drop at the interface.

* |In reality, however, even flat surfaces that appear
smooth to the eye turn out to be rather rough
when examined under a microscope.

 Thus, an interface offers some resistance to heat
transfer, and this resistance per unit interface
area is called the thermal contact resistance.



Consider heat transfer through two metal rods of cross-sectional area A that
are pressed against each other. Heat transfer through the interface of these two
rods is the sum of the heat transfers through the solid contact spots and the
gaps in the noncontact areas and can be expressed as

0 = Qcontact T O gp (3-25)

It can also be expressed in an analogous manner to Newton’s law of cooling as

Q = hc‘A ﬂTinl-&:rt':u:va (3-26)

where A is the apparent interface area (which is the same as the cross-sectional
area of the rods) and AT e 1S the effective temperature difference at the
interface. The quantity h.. which corresponds to the convection heat transfer
coefficient, is called the thermal contact conductance and is expressed as

O/A

h.=——
"'l Tinluri':uc-:

(W/m?® - °C) (3-27)

It is related to thermal contact resistance by

1 A interface 1 q
R, = — = —educe (m? - °C/W) (3-28)
h, QA
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TABLE 3-1

Thermal contact conductance

for aluminum plates with different
fluids at the interface for a surface
roughness of 10 wm and interface
pressure of 1 atm (from Fried,
Ref. b)

Contact
Fluid at the Conductance, A,
Interface W/m? - °C
Air 3640
Helium 9520
Hydrogen 13,900
Silicone oil 19,000
Glycerin 37,700

Prepared by: Dr. Tahir Abdul Hussain



EXAMPLE 34 Equivalent Thickness for Contact Resistance

The thermal contact conductance at the interface of two 1-cm-thick aluminum
plates is measured to be 11,000 W/mZ - °C. Determine the thickness of the alu-
minum plate whose thermal resistance is equal to the thermal resistance of the
interface between the plates (Fig. 3-17).

— Interface

L

o
AR

Plate : Equivalent : Plate
1 | aluminum | 2
: layer :
| |
1cm : 2.15cm : 1 cm
T T -
| |
| |
FIGURE 3-17

Schematic for Example 3—4.
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SOLUTION The thickness of the aluminum plate whose thermal resistance
Is equal to the thermal contact resistance is to be determined.

Properties The thermal conductivity of aluminum at room temperature is
k=237 W/m - °C (Table A-3).

Analysis Noting that thermal contact resistance is the inverse of thermal con-
tact conductance, the thermal contact resistance is

1 1
R,=7 = = 0.909 X 10~* m? - °C/W
“h. 11,000 W/m? - °C "

For a unit surface area, the thermal resistance of a flat plate is defined as

where L is the thickness of the plate and k is the thermal conductivity. Setting
R = R, the equivalent thickness is determined from the relation above to be

L =kR.= (237 W/m - °C)(0.909 X 10* m?-°C/W) = 0.0215m = 2.15 ¢cm
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Generalized Thermal Resistance
Network

Consider the composite wall shown in Fig. 3—19, which consists of two par- }SLl'ﬂTion

allel layers. The thermal resistance network, which consists of two parallel re-
sistances, can be represented as shown in the figure. Noting that the total heat 4, — O
transfer is the sum of the heat transfers through each layer, we have o M T
| fe— " 2
; @ &
- . n . Tl - Tz n T] - TE T T ( ] —|— 1 ) 3.29 ‘42__._ >
Q=0,t0,= R, R = (I E}ER] R, (3-29)
Utilizing electrical analogy, we get L
P
. T,—-T o
) =—F— (3-30) 0 o 0
llr‘?In'.:'.| Tl P : — T,
Q’?—h- N
where R
1 11 RR e
1. s Ry = o (3-31) FIGURE 3-19
Row Ri R Ry + R Thermal resistance

network for two parallel layers.
since the resistances are in parallel.
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Now consider the combined series-parallel arrangement shown in Fig.
3-20. The total rate of heat transfer through this composite system can again
be expressed as

o DT (3.32)
Rtl:-l,a] )
where Insulation
RIRE AI—"'Jlr (D kl
Rlntal = RIE + RS- + Rmnv = m + R?r + Rmrw (3-33) Tl/”' @ " A,
~NQ K
Ay ky h T,
and
R, == R, = 22 Ro=2  po- L (3-34)
kA kA P ksAY M hA; Ly=L, L;—
[/ —
e Ry .0
-— . ! ARAAAAN A ——e
TI QZ_' REI chmr T
R2

FIGURE 3-20

Thermal resistance network for
combined series-parallel arrangement.
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EXAMPLE 3-6 Heat Loss through a Composite Wall

A 3-m-high and 5-m-wide wall consists of long 16-cm X 22-cm cross section
horizontal bricks (k= 0.72 W/m - °C) separated by 3-cm-thick plaster layers
(k= 0.22 W/m - °C). There are also 2-cm-thick plaster layers on each side of
the brick and a 3-cm-thick rigid foam (k = 0.026 W/m - °C) on the inner side
of the wall, as shown in Fig. 3—-21. The indoor and the outdoor temperatures are
20°C and —10°C, and the convection heat transfer coefficients on the inner
and the outer sides are h; = 10 W/m? - °C and h, = 25 W/m? - °C, respectively.
Assuming one-dimensional heat transfer and disregarding radiation, determine
the rate of heat transfer through the wall.

Foam Plaster
hy,

1.5cm

Brick

i“-w]

22 cm

1.5cm

e A e

x| h
kol 16 cm —2-]

R_1
Yy
RI RJ RZ R.1 Rt’s Ro
T‘)c | SN AR AN AN AWA—AAN— Tx}
R
Sy
1

FIGURE 3-21
Schematic for Example 3-6.



SOLUTION The composition of a composite wall is given. The rate of heat
transfer through the wall is to be determined.

Assumptions 1 Heat transfer is steady since there is no indication of change
with time. 2 Heat transfer can be approximated as being one-dimensional since
it is predominantly in the x-direction. 3 Thermal conductivities are constant.
4 Heat transfer by radiation is negligible.

Properties The thermal conductivities are given to be k = 0.72 W/m - °C
for bricks, k = 0.22 W/m - °C for plaster layers, and k= 0.026 W/m - °C for the
rigid foam.

Analysis There Is a pattern in the construction of this wall that repeats itself
every 25-cm distance in the vertical direction. There is no variation in the hori-
zontal direction. Therefore, we consider a 1-m-deep and 0.25-m-high portion of
the wall, since it is representative of the entire wall.

Assuming any cross section of the wall normal to the x-direction to be
isothermal, the thermal resistance network for the representative section of
the wall becomes as shown in Fig. 3-21. The individual resistances are eval-
uated as:

1 1

R=R._. .= - = 0.4°C/W

P el p A (10 Wm? - °C)(0.25 X 1 m?)

L 0.03 m

R — R = — = = 4-6OCIW

b Thoam = 24 (0.026 W/m - °C)(0.25 X 1 m?)

L 0.02 m

R‘) —_— R e R . _ — =

P TelseRside A (0.22 W/m - °C)(0.25 X 1 m?)

= 0.36°C/W
L 0.16 m

Ry =Rs = lR|:|Ls||snar, center — H - (0.22 W/m - °C)(0.015 X 1 mz]

= 48.48°C/'W



L _ 0.16 m
kA (0.72 W/m - °C)(0.22 X 1 m?)

1 1
A (25 W/m? - °C)(0.25 X 1 m?)

= 1.01°C/'W

Ry = Ry =

R,= R o= = 0.16°C/W

The three resistances R, R,, and R in the middle are parallel, and their equiv-
alent resistance is determined from

A 1. 1 1 1 1 1

n_ + + = o 0
Rua Ry Ry TR, 4848 TTo1 Tagag~ MOOWIC

which gives

R, = 0.97°C/W

Now all the resistances are in series, and the total resistance is

RlﬂtﬂlzRf+Rl +R2+Rmid +Rﬁ+Ra
=04 +46+ 036+ 097+ 036+ 0.16
= 6.85°C/W

Then the steady rate of heat transfer through the wall becomes

T, — T, [20—(—10)°C

Q= Row  6.85°C/W

— 438 W (per 0.25 m” surface area)

or 4.38/0.25 = 17.5 W per mZ area. The total area of thewallisA=3m x 5
m = 15 mZ. Then the rate of heat transfer through the entire wall becomes

Ot = (17.5 W/m?)(15 m?) = 263 W



Heat Conduction in Cylinder and

Spheres

Consider a long cylindrical layer (such as a circular pipe) of inner radius ry,
outer radius r,, length L, and average thermal conductivity k (Fig. 3-24). The
two surfaces of the cylindrical layer are maintained at constant temperatures
T, and T,. There is no heat generation in the layer and the thermal conductiv-
ity is constant. For one-dimensional heat conduction through the cylindrical
layer, we have T(r). Then Fourier’s law of heat conduction for heat transfer
through the cylindrical layer can be expressed as

z dT
and.c}'l = —kA E (W) (3-35)

where A = 2arrL is the heat transfer area at location r. Note that A depends on
r, and thus it varies in the direction of heat transfer. Separating the variables
in the above equation and integrating from r = ry, where T(r)) = T\, tor = r»,
where T(ry) = T, gives

KE and.c}'l Ty

dr = — k dT (3-36)
Jr=r A JT=T,

Substituting A = 27rrL and performing the integrations give

T — T

and.c}'l = ZTI.'Lk m

(W) (3-37)

since @ .ond. oyt = constant. This equation can be rearranged as

. T| B T: ,
() = (W) (3-38)

=% cond, cyl R
cyl

—T,

FIGURE 3-24

A long cylindrical pipe (or spherical
shell) with specified inner and outer
surface temperatures T, and 7.



where

_In(ry/ry) In{Outer radius/Inner radius)
o 2xLk 2w X (Length) X (Thermal conductivity)

(3-39)

is the thermal resistance of the cylindrical layer against heat conduction, or
simply the conduction resistance of the cylinder layer.

We can repeat the analysis above for a spherical layer by taking A = 41’
and performing the integrations in Eq. 3—36. The result can be expressed as

. T] - Tz
Q cond, sph - R

(3-40)
sph

where

F; — I QOuter radius — Inner radius

Ropn = dqrryry k ~ 4m(Outer radius)(Inner radius)(Thermal conductivity)

(3-41)

is the thermal resistance of the spherical layer against heat conduction, or sim-
ply the conduction resistance of the spherical layer.
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Now consider steady one-dimensional heat flow through a cylindrical or
spherical layer that is exposed to convection on both sides to fluids at temper-
atures T, and T, with heat transfer coefficients i, and h,, respectively, as
shown in Fig. 3-25. The thermal resistance network in this case consists of
one conduction and two convection resistances in series, just like the one for
the plane wall, and the rate of heat transfer under steady conditions can be ex-

pressed as
. T, — T,
0 = TR (3-42)
where
Rt = Regny 1 T Ryt + R 2
In(ry /r
- ('Zw:'llehl ;Lk” " ('217:']1.-2)}?3 343
for a cylindrical layer, and
Rt = Reony 1 + Ry + Rege 2
e (349) R R+ Ry R

= - + + -
(darri)hy 47""']1"'21{( (41ri)h,

for a spherical layer. Note that A in the convection resistance relation R, =
1/hA is the surface area at which convection occurs. It 1s equal to A = 27rrL
for a cylindrical surface and A = 442 for a spherical surface of radius . Also
note that the thermal resistances are in series, and thus the total thermal resis-
tance is determined by simply adding the individual resistances, just like the

electrical resistances connected in series.
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Multilayer Cylinder and Spheres

T, T, T, T,

T‘rc ] - '.l"'._-"‘"-,-'."'J'ﬂ'\_".‘".\,"ﬂ'-.,-"" '."'.,"ﬂ".- ""'-_,-'r.'-._-".'-.,-'.\'-._-"," = '""-_-""\,"f"x-""-.\; ""‘.-'F"-,"ﬁ' - - "l"-o-""'-_."“'-‘,-"".L.""-.,- 'r.'-._-".' - "\'-‘.-"".‘-""-4-""\_.'"'-"-""&. A - Tx .
R{'Um‘. | RC}'| N cyl, 2 Rtyl 3 RL‘:JM‘.E

The thermal resistance network for heat transfer through a three-layered composite cylinder
subjected to convection on both sides.

where Ry, is the fotal thermal resistance, expressed as

llr‘Elu'.:'.l - R;um. 1 T RL'_'-'l.l + R-.'}'..J T RL'_'-". 3 + R-.'nr.'-'.f
In(ry/ry)  In(rs/ry) In(ry/rs
__1 /M) 3/p) | Ilrglry) ]
h| .-'-1| E‘HLJM ETFLE:;: ETFLE:H J'lf: .""‘l_1_




EXAMPLE 3-8 Heat Loss through an Insulated Steam Pipe

Steam at 7., = 320°C flows in a cast iron pipe (kK = 80 W/m - °C) whose inner
and outer diameters are D; = 5 cm and D, = 5.5 cm, respectively. The pipe is
covered with 3-cm-thick glass wool insulation with kK = 0.05 W/m - °C. Heat is
lost to the surroundings at 7., = 5°C by natural convection and radiation, with

a combined heat transfer coefficient of h, = 18 W/m? - °C. Taking the heat
transfer coefficient inside the pipe to be h; = 60 W/m? - °C, determine the rate
of heat loss from the steam per unit length of the pipe. Also determine the tem-
perature drops across the pipe shell and the insulation.

Insulation

| 2 3
T:-:J NN e AN e e Tw}
Rr' R 1 Rz Rﬂ
FIGURE 3-29

Schematic for Example 3—8.



SOLUTION A steam pipe covered with glass wool insulation is subjected to
convection on its surfaces. The rate of heat transfer per unit length and the
temperature drops across the pipe and the insulation are to be determined.
Assumptions 1 Heat transfer is steady since there is no indication of any
change with time. 2 Heat transfer is one-dimensional since there is thermal
symmetry about the centerline and no variation in the axial direction. 3 Thermal
conductivities are constant. 4 The thermal contact resistance at the interface is
negligible.
Properties The thermal conductivities are given to be kK = 80 W/m - °C for cast
iron and kK = 0.05 W/m - °C for glass wool insulation.
Analysis The thermal resistance network for this problem involves four resis-
tances in series and is given in Fig. 3-29. Taking L = 1 m, the areas of the
surfaces exposed to convection are determined to be

A, = 2mr,L = 2m(0.025 m)(1 m) = 0.157 m?

As = 27r;L = 2%(0.0575 m)(1 m) = 0.361 m>
Then the individual thermal resistances become

1 1

R—R __1 _ = 0.106°C/W
i Mool T pA T (60 W/m? - °C)(0.157 m2)

R R In(ry/ry) In(2.75/2.5) — 0.0002°C/ W
P T mk L 2m(80 W/m - °C)(1 m)

R R _In(rsfry) In(5.75/2.75) — 235°C)W
2 = Mipsulation — 2,.".k2L - 217{005 W/m - UC)(]. rn) B

R-p .| 1 = 0.154°C/'W

a

com.2 b As B (18 W/m? - °C)(0.361 m?)
Noting that all resistances are in series, the total resistance is determined to be

Roy=R + R, + R, + R, = 0.106 + 0.0002 + 2.35 + 0.154 = 2.61°C/ W

Then the steady rate of heat loss from the steam becomes

= Tx| - Tmz {320 — 5)0C } '
Q=—"R—— ~26raw _ 121W  (permpipelength)

The heat loss for a given pipe length can be determined by multiplying the
above quantity by the pipe length L.

The temperature drops across the pipe and the insulation are determined
from Eq. 3-17 to be

ATy, = OR . = (121 W)(0.0002°C/ W) = 0.02°C
A"-'r‘in.s1.leniDn = Q‘Rinsulah'on = {121 W)(QSSOCIW) = 284°C

That is, the temperatures between the inner and the outer surfaces of the pipe
differ by 0.02°C, whereas the temperatures between the inner and the outer
surfaces of the insulation differ by 284°C.



Critical Radius of Insulation

* Adding more insulation to a wall or to the attic
always decreases heat transfer.

* Adding insulation to a cylindrical pipe or a
spherical shell, however, is a different matter.

 The additional insulation increases the
conduction resistance of the insulation layer
but decreases the convection resistance of the
surface because of the increase in the outer
surface area for convection.



Consider a cylindrical pipe of outer radius r; whose outer surface tempera-
ture 7T is maintained constant (Fig. 3—-30). The pipe is now insulated with a
material whose thermal conductivity is & and outer radius is r,. Heat is lost
from the pipe to the surrounding medium at temperature 7., with a convection
heat transfer coefficient 4. The rate of heat transfer from the insulated pipe to
the surrounding air can be expressed as (Fig. 3-31)

Insulation

= Tl - TI _ T| - TI.
Q B JF“,iﬂs + Rmm‘ B ]n(ri ‘Frl) 1
2mlk h(2mrL)

(3-49)

The variation of Q with the outer radius of the insulation r, is plotted in FIGURE 3-30
Fig. 3-31. The value of r, at which Q reaches a maximum is determined from An insulated cylindrical pipe
the requirement that dQ /dr, = 0 (zero slope). Performing the differentiation exposed to convection from the outer

and solving for r, yields the critical radius of insulation for a cylindrical surface and the ‘henﬂ_‘dl resistance
body to be network associated with it.

k .
Fer, cylinder = E (m) (3-50)

The discussions above can be repeated for a sphere, and it can be shown in

a similar manner that the critical radius of insulation for a spherical shell is
2k

Fer, sphere — T (3-51)

where k is the thermal conductivity of the insulation and £ is the convection
heat transfer coefficient on the outer surface.

Prepared by: Dr. Tahir Abdul Hussain FIGURE 3-31



EXAMPLE 3-9 Heat Loss from an Insulated Electric Wire

A 3-mm-diameter and 5-m-long electric wire is tightly wrapped with a 2-mm-
thick plastic cover whose thermal conductivity is Kk = 0.15 W/m - °C. Electrical
measurements indicate that a current of 10 A passes through the wire and there
is a voltage drop of 8 V along the wire. If the insulated wire Is exposed to a
medium at 7.. = 30°C with a heat transfer coefficient of h = 12 W/m? - °C, de-
termine the temperature at the interface of the wire and the plastic cover in
steady operation. Also determine whether doubling the thickness of the plastic
cover will increase or decrease this interface temperature.

R

plastic cony

FIGURE 3-32
Schematic for Example 3-9. Prepared by: Dr. Tahir Abdul Hussain



SOLUTION An electric wire is tightly wrapped with a plastic cover. The inter-
face temperature and the effect of doubling the thickness of the plastic cover
on the interface temperature are to be determined.

Assumptions 1 Heat transfer Is steady since there is no indication of any
change with time. 2 Heat transfer is one-dimensional since there is thermal
symmetry about the centerline and no variation in the axial direction. 3 Thermal
conductivities are constant. 4 The thermal contact resistance at the interface is
negligible. 5 Heat transfer coefficient incorporates the radiation effects, if any.
Properties The thermal conductivity of plastic I1s given to be k = 0.15
W/m - °C.

Analysis Heat is generated in the wire and its temperature rises as a result of
resistance heating. We assume heat is generated uniformly throughout the wire
and is transferred to the surrounding medium in the radial direction. In steady
operation, the rate of heat transfer becomes equal to the heat generated within
the wire, which is determined to be

O =W =VI=(8V)I0OA) =80W

The thermal resistance network for this problem involves a conduction resis-
tance for the plastic cover and a convection resistance for the outer surface in
series, as shown in Fig. 3-32. The values of these two resistances are deter-
mined to be

A, = (27ry)L = 2(0.0035 m)(5 m) = 0.110 m?
_ 1 1
hA; (12 W/m? - °C)0.110 m?)
. CIn(ry/ry) In(3.5/1.5)
plasic — "k~ 241(0.15 W/m - °C)(5 m)

= 0.76°C/'W

RCDJ'.I v

= 0.18°C/W




and therefore

Riat = Ryjasic + Reony = 0.76 + 0.18 = 0.94°C/ W

Then the interface temperature can be determined from

Q . Tl - Tx
thua]

— Tl — Tm + QR total
= 30°C + (80 W)H(0.94°C/W) = 105°C

Note that we did not involve the electrical wire directly in the thermal resistance
network, since the wire involves heat generation.

To answer the second part of the question, we need to know the critical radius
of insulation of the plastic cover. It is determined from Eq. 3-50 to be

_ _k_015W/m-°C
“h 12W/m? - °C

=0.0125m = 12.5 mm

which is larger than the radius of the plastic cover. Therefore, increasing the
thickness of the plastic cover will enhance heat transfer until the outer radius
of the cover reaches 12.5 mm. As a result, the rate of heat transfer Q will in-
crease when the interface temperature T; is held constant, or T; will decrease

when @ is held constant, which is the case here.
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Heat Transfer from Finned Surface

Consider a volume element of a fin at location x having a length of Ax, cross-
sectional area of A_, and a perimeter of p. as shown in Fig. 3-35. Under steady
conditions, the energy balance on this volume element can be expressed as

conduction from the
element at x + Ax

conduction into
the element at x

or
Qonnd._x = and.x + Ax + Q Cony

where

annv = h(.p M}(T —T.)
Substituting and dividing by Ax, we obtain

Qonnd..r +Ar T Q(‘Uﬂd..’(
Ax

Taking the limit as Ax — 0 gives

dend
T + hp(T T;) =10

From Fourier’s law of heat conduction we have

B dTl
Qonnd - mc dx

convection from

( Rate of heat " ( Rate of heat .' ( Rate of heat
= +
the element

+hp(T—T.)=0

(3-52)

(3-53)

(3-54)

Volume
element

FIGURE 3-35

Volume element of a fin at location x
having a length of Ax, cross-sectional
area of A_, and perimeter of p.



where A_. is the cross-sectional area of the fin at location x. Substitution of this
relation into Eq. 3-53 gives the differential equation governing heat transfer
in fins,

d dT

i (F.AC dx) hp(T—T.)=0 (3-55)
In general, the cross-sectional area A, and the perimeter p of a fin vary with x,
which makes this differential equation difficult to solve. In the special case of
constant cross section and constant thermal conductivity, the differential
equation 3-55 reduces to

a0 _ g = (3-56)
dx-
where
2 P (3-57
Y ]

and & = T — T. is the temperature excess. At the fin base we have

ﬂb: Tb_Tx

EJ'(J.‘) = le’m + CZE_M (3-58)

Boundary condition at fin base: 00)=0,=T, —T. (3-59)
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{a) Specified temperature
(b) Negligible heat loss

(c) Convection

(d) Convection and radiation

FIGURE 3-36

) Boundary conditions at the
fin base and the fin tip.



Infinitely Long Pipe

Boundary condition at fin tip: (L) =T(L) —T.=0 as L —- =

] B T(x)—T. N J—
Very long fin: L T pax = oI,

T —T. (3-60)
Note that the temperature along the fin in this case decreases exponentially
from T} to T.., as shown in Fig. 3-37. The steady rate of heat transfer from the
entire fin can be determined from Fourier’s law of heat conduction

—RA‘.-E

Ej]. =10 - ﬂ'\'hpml (Tll, - -T“J

(3-61)

Very long fin: 0 long fin —

where p is the perimeter, A, is the cross-sectional area of the fin, and x is the
distance from the fin base. Alternatively, the rate of heat transfer from the fin
could also be determined by considering heat transfer from a differential
volume element of the fin and integrating it over the entire surface of the fin.
That is,

Oin = f h[T(x) — T.] dAg, = f hé(x) dA, (3-62)
A Agy
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(p=nD. A = D34 for a cylindrical fin)

FIGURE 3-37

A long circular fin of uniform cross
section and the variation of
temperature along it.
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Qbasc = Qﬂn
FIGURE 3-38

Under steady conditions, heat transfer
from the exposed surfaces of the

fin is equal to heat conduction

to the fin at the base.



Negligible Heat Loss from Fin Tip
(Insulated Fin Tip)

do

dr =0 (3-63)

x=L

Boundary condition at fin tip:

Tix)y— T, cosha(lL — x)
?_.'-'- _ T'.-.' B 'tl:‘.\-'Sh “L

Adiabatic fin tip: (3-64)

The rate of heat transfer from the fin can be determined again from Fourier’s
law of heat conduction:

Adiabatic fin tip: 0] insulated tip — — KA, %
I A xr =10

= \VhpkA_(T, — T.)) tanh aL (3-65)
Note that the heat transfer relations for the very long fin and the fin with

negligible heat loss at the tip differ by the factor tanh aL, which approaches 1
as L becomes very large.
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Convection or Combined from Fin Tip

A practical way of accounting for the heat loss from the fin tip is to replace
the fin length L in the relation for the insulated tip case by a corrected length
defined as (Fig. 3-39)

A,
Corrected fin length: L.=L+ F (3-66)
where A, is the cross-sectional area and p is the perimeter of the fin at the tip.
Multiplying the relation above by the perimeter gives A grected = Afin (latera) T
Ayp» Which indicates that the fin area determined using the corrected length is
equivalent to the sum of the lateral fin area plus the fin tip area.

Using the proper relations for A, and p, the corrected lengths for rectangu-
lar and cylindrical fins are easily determined to be

D

— — I — -|— -
L L ind L L n

c, cylindrical fin

fd | =

c, rectangular fin

where 1 is the thickness of the rectangular fins and D is the diameter of the
cylindrical fins.
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(b) Equivalent fin with insulated tip

FIGURE 3-39

Corrected fin length L, is defined such
that heat transfer from a fin of length
L. with insulated tip is equal to heat
transfer from the actual fin of length L
with convection at the fin tip.



